Monday, August 31, 2009

Neurobiology of creativity

The neurobiology of creativity has been addressed in the article "Creative Innovation: Possible Brain Mechanisms." The authors write that "creative innovation might require coactivation and communication between regions of the brain that ordinarily are not strongly connected". Highly creative people who excel at creative innovation tend to differ from others in three ways:

Thus, the frontal lobe appears to be the part of the cortex that is most important for creativity.

This article also explored the links between creativity and sleep, mood and addiction disorders, and depression.

In 2005, Alice Flaherty presented a three-factor model of the creative drive. Drawing from evidence in brain imaging, drug studies and lesion analysis, she described the creative drive as resulting from an interaction of the frontal lobes, the temporal lobes, and dopamine from the limbic system. The frontal lobes can be seen as responsible for idea generation, and the temporal lobes for idea editing and evaluation. Abnormalities in the frontal lobe (such as depression or anxiety) generally decrease creativity, while abnormalities in the temporal lobe often increase creativity. High activity in the temporal lobe typically inhibits activity in the frontal lobe, and vice versa. High dopamine levels increase general arousal and goal directed behaviors and reduce latent inhibition, and all three effects increase the drive to generate ideas.

Working memory and the cerebellum

Vandervert described how the brain’s frontal lobes and the cognitive functions of the cerebellum collaborate to produce creativity and innovation. Vandervert’s explanation rests on considerable evidence that all processes of working memory (responsible for processing all thought) are adaptively modeled by the cerebellum. The cerebellum (consisting of 100 billion neurons, which is more than the entirety of the rest of the brain is also widely known to adaptively model all bodily movement. The cerebellum’s adaptive models of working memory processing are then fed back to especially frontal lobe working memory control processes where creative and innovative thoughts arise. (Apparently, creative insight or the ‘’aha’’ experience is then triggered in the temporal lobe.) According to Vandervert, the details of creative adaptation begin in ‘’forward’’ cerebellar models which are anticipatory/exploratory controls for movement and thought. These cerebellar processing and control architectures have been termed Hierarchical Modular Selection and Identification for Control (HMOSAIC).New, hierarchically arranged levels of the cerebellar control architecture (HMOSAIC) develop as mental mulling in working memory is extended over time. These new levels of the control architecture are fed forward to the frontal lobes. Since the cerebellum adaptively models all movement and all levels of thought and emotion, Vandervert’s approach helps explain creativity and innovation in sports, art, music, the design of video games, technology, mathematics, the child prodigy, and thought in general.

REM sleep

Creativity involves the forming of associative elements into new combinations that are useful or meet some requirement. Sleep adds this process. REM rather than NREM appears to be responsible. This has been suggested to be due to changes in cholinergic and noradrenergic neuromodulation that occurs during REM sleep. During this period of sleep high levels of acetylcholine in the hippocampus suppress feedback from hippocampus to the neocortex, and lower levels of acetylcholine and norepinephrine in the neocortex encourage the spread of associational activity within neocortical areas without control from the hippocampus. This is in contrast to waking consciousness, where higher levels of norepinephrine and acetylcholine inhibit recurrent connections in the neocortex. It is proposed that REM sleep would add creativity by allowing "neocortical structures to reorganize associative hierarchies, in which information from the hippocampus would be reinterpreted in relation to previous semantic representations or nodes."

No comments:

Post a Comment